
147

An FPGA-Based Transceiver Module

John B. Stephensen, KD6OZH
3064 E. Brown Ave., Fresno, CA 93703
kd6ozh@arrl.net

Traditionally, hams have wired together multiple standard integrated circuits to construct
radios, TNCs and other devices. However, modern devices manufactured in high volume
integrate most functionality on one chip that is customized for the purpose. Feature sizes in
integrated circuits have now become so small that field programmable gate arrays (FPGAs)
can be used to achieve what once required a custom chip. Since the logic in the FPGA can be
used in parallel rather than sequentially, it is a much more powerful tool than a microprocessor.
Recent FPGAs also contain larger amounts of dedicated memory, making it possible to
incorporate microprocessors within the FPGA.

My goal was to make a small high-speed digital signal processor that can be embedded in
amateur radio devices. The original hardware platform was developed while I was a member of
the ARRL high-speed multimedia (HSMM) working group and was described in QEX1.
However, the combination of an FPGA and an external microcontroller was costly and inter-
chip communication imposes design restrictions and a speed penalty. Therefore, I developed a
soft processor that was recently described in PSR2. However, this CPU comprises only 8% of
the logic required to implement an OFDM modem. This document describes the specialized
signal processing modules that accompany the CPU. Each implements a specific algorithm,
but can be customized by loading new parameters. The result is a device that looks like a
custom integrated circuit that can have software downloaded to program it for specific
applications.

1. Overview

The hardware platform is a 2.5” x 2.4” PCB with a Xilinx XC3S500E FPGA surrounded by an
80 Msps analog to digital converter (ADC), 80 Msps digital to analog converter (DAC), 100
Mbps Ethernet physical layer interface (PHY) and 4-megabits of flash memory. There is also a
JTAG port, a low-speed DAC and an RS-485 port for debugging and control. The 10-pin
header connects directly to 5 FPGA I/O pins that may be used for debugging, controlling
analog circuitry and/or attaching an audio CODEC. The schematic diagrams are in appendix A.

The ADC analog input and DAC analog output are provided directly on 2-pin connectors and
analog filtering takes place externally. This allows the use double-sided boards or even
copper-clad perforated board for analog circuitry. The FPGA configuration is automatically
loaded from the flash memory when power is applied. It contains three main sections – the
tuner, the modem and the CPU.

148

Figure 1 – DCP-3 PCB

The tuner section, shown in figure 2, interfaces to the ADC and DAC and provides digital
upconversion, downconversion, filtering and signal level control. Some functions operate at
twice the sampling rate in order to share resources. The single lines in the block diagram are
paths where the in-phase (I) and quadrature (Q) samples are processed sequentially at 160
MHz. The double lines are paths where I and Q samples are processed in parallel at 80 MHz.

The signal processing hardware starts with the direct digital synthesizer (DDS) whose
frequency may be set with a resolution of 0.02 Hz. During reception, the input from the ADC is
sequentially multiplied by the cosine and sine outputs of the DDS to generate baseband I and
Q outputs. One cascaded integrator comb (CIC) filter and two finite impulse response (FIR)
filters provide downsampling and establish the receiver bandwidth. A noise blanker is located
between the FIR filters. The AGC levels the signals and converts from two 20-bit to two 16-bit
samples. Optionally, the received signal may pass through the resampling filter to be
converted to a rate that is not an integer fraction of the ADC sampling rate.

When transmitting, the resampler can convert the baseband signal to a rate compatible with
the DAC. The signal may then be compressed or clipped to reduce the peak to average power
ratio (PAPR) and passed on to the filter chain. The order of the filters is reversed for
transmission with the two FIR filters first and the CIC filter last. Upsampled I and Q baseband
signals are mixed with the cosine and sine DDS outputs and added together to produce the
final output to the DAC.

149

Figure 2 –Tuning, Filtering and Level Control Circuitry

The modem section, shown in figure 3, uses CORDIC (coordinate rotation digital computer) to
modulate or demodulate the signal when a single carrier is used. This is an algorithm that
performs trigonometric functions using only adds and shifts. For amplitude modulation (AM)
and phase modulation (PM), it can rotate the input signal to alter its phase or measure the
phase and magnitude of the input. For frequency modulation (FM), the input is integrated or
the output is differentiated. SSB reception and transmission use a 16-bit accumulator that
continuously rotates the phase. It functions as the BFO and provides 0.12 Hz resolution at 8
ksps. The CPU accesses the modem via a 15-word FIFO with two 16-bit entries containing
either magnitude and phase or I and Q information.

Figure 3 – Modulation and Demodulation Circuitry

150

The timing recovery unit generates error signals for use in optimizing the sampling of FSK and
PSK waveforms. The null detector and phase correlator provide timing recovery for OFDM
reception. Both are described in more detail later in this document.

A fast Fourier transform (FFT) is provided for OFDM or MFSK modems. It moves data
between two RAMs while converting between time and frequency domains. The time domain
buffer connects directly to the tuner and the frequency domain buffer is read or written by the
CPU. When receiving, I and Q samples of the input signal accumulate in one RAM, the
processing module then calculates the FFT and places the phase and magnitude for each
demodulated subcarrier in the second RAM. When transmitting, the CPU places data in the
subcarrier RAM and this is converted to a series of samples in the I/Q RAM.

An 80 MHz 16-bit CPU controls the tuner and modem. It has a RISC instruction set that
includes bit manipulation for protocol processing and hardware multiply, multiply-accumulate
and divide for signal processing. It also allows addition, subtraction, loading or comparison of
8-bit constants in one instruction or the same operations with 16-bit constants using a prefix
instruction. In addition, memory read and memory write instructions support indirect addresses
with offsets while input and output instructions use direct addressing. This produces fast
compact code. The complete instruction set is described in appendix B.

Figure 4 – CPU and Peripherals

The CPU has 8 kB of dedicated instruction and data memory that is accessed simultaneously
via two ports. It is augmented by a number of modules that provide I/O and speed up common
algorithms for digital communication and digital signal processing such as filtering and error
detection and correction. These are accessed via I/O ports and two-port buffer memory as
shown in figure 4. An advantage of this architecture is that the CPU can start multiple
operations that proceed in parallel.

151

2. Tuner

The heart of the DDS is a phase accumulator that increments by the value in the center
frequency register on alternate cycles of the 160 MHz clock. The upper 10 bits of the phase
output address a dual-port 1024 x 18 ROM sine look up table. Adding a 90-degree offset on
alternate clock cycles generates cosine and sine outputs. The ROM address inputs select
adjacent entries and linear interpolation is used to smooth the output. The difference between
adjacent entries is multiplied by bits 4-21 of the phase accumulator and then added to the first
entry. Extensive pipelining is used with delays inserted between stages to align results. The
shift registers provided in the Xilinx architecture minimize the amount of resources used as one
FPGA logic cell can provide a 1 to 16 stage shift register. 8 clock cycles are used to generate
each output. The algorithm was originally described in a Motorola application note3 and spurs
should be below –112 dBc.

Figure 5 – DDS VFO

The CIC filter, shown in figure 6, can downsample or upsample by an integer value between
10 and 640, converting between 80 Msps and 8000-125 ksps. A CIC filter is used as it can
provide large decimation and interpolation ratios while using only addition and subtraction. It is
essentially a moving average filter that has been optimized to use less hardware. Instead of
summing a fixed number of samples in each pass, the process has been simplified to summing
all samples in an accumulator (integration) and then calculating the difference between
accumulator states at two different times – the first and last taps of the moving average. The
frequency response of the differentiator is a comb shape so that portion is called a comb filter.
The accumulator can overflow as long as there are enough bits to cover the time span over
which the filter averages. Cascading multiple filters improves the frequency response and the
integrators and differentiators can be grouped together. This simplifies downsampling as
intervening samples can be ignored. The differentiators need only have one delay register as
long as they are enabled only for each output sample. The accumulators must process all input
samples. When upsampling the differentiators precede the integrators.

The CIC circuitry contains four 56-bit integrators and four 28-bit differentiators for each
channel. The integrators are split in two and the carry between the two 28-bit halves is
buffered to minimize propagation delays. The CIC filter has an inherent gain that varies with
the interpolation or decimation factor so this is offset by setting a gain factor that controls a

152

shifter and multiplier. The CIC gain is the third power of the interpolation factor or the fourth
power of the decimation factor.

When receiving, the minimum CIC gain is 104 and the maximum gain is about 1.68 x 1011. The
received data input (RDI) is multiplied by 0-1024 and shifted by 0-15 bits by two 4-input
multiplexers before being applied to the first integrator. The shifter provides a 43-bit output so it
is expanded to 56 bits by adding 13 sign bits. This gives a gain range of 225 or about 3.3 x 107.
The top 28 bits of the last integrator are then fed to the first differentiator and the received data
output (RDO) is obtained from the top 18 bits of the last differentiator. Thus, the input signal is
expected to grow by 38 bits (2.75 x 1011) by the time that it reaches the output. When the
minimum decimation factor of 10 is used, the gain compensation can be set to 2.75 x 107.
When the maximum decimation factor of 640 is used, the gain compensation can be set to
1.63 x 100.

Figure 6 – CIC Filter

The transmit data input (TDI) is multiplied by 0-8 before being applied to the bottom 21 bits of
first differentiator. The upper 7 bits are copies of the sign bits. This is necessary as the
required resolution grows by at least 1 bit per state. The full 28-bit differentiator output is then
shifted by 0-15 bits and applied to the first integrator. This gives a gain adjustment range of 218

or about 2.6 x 105. The minimum CIC gain is 103 and the maximum gain is about 2.6 x 108.
The total gain can be kept at about 2.6 x 108, so the 18-bit input grows to 46 bits.
Consequently the transmit data output (TDO) is tapped down on the last integrator and the top
10 bits are ignored.

Two FIR filters follow the CIC filter. The first is used for downsampling by a factor of 2-50 and
the second is used to establish the shape of the final passband. It may also downsample or

153

upsample by a factor of up to 20 depending on the steepness of the filter skirts. The first FIR
filter outputs 18-bit results and the second FIR filter outputs 20 bit results. A CIC filter is
essentially a FIR filter with all coefficients equal to one and has a fixed frequency response of
which only a fraction of the center portion is flat. FIR filters operate by multiplying a set of
signal samples (data) by a set of positive and negative coefficients and summing the products.
They consume more resources than the CIC but this allows tailoring the frequency response to
specific requirements. Both FIR filters use 24-bit coefficients to reduce the level of spurious
responses. Spurs are down 4-5 dB per coefficient bit depending on the filter shape factor and
the amount of downsampling or upsampling.

Figure 7 – FIR Filter

Figure 7 shows the common architecture of the two FIR filters. Each uses two dual-port 18k
block RAMs. One port of the data RAM is used to store samples as they arrive. The sample
counter determines the address used and it always incremented after each write. When the
filter starts the contents of the sample counter are saved and used as the base address for the
other port which is used to retrieve samples for processing by the filter. I and Q samples are
stored serially in the RAM and are accessed on opposite phases of the 80 MHz master clock.
The filter runs on a double-rate clock at 160 MHz.

The second block RAM stores instructions consisting of a 9-bit index, a 24-bit coefficient, a
write enable bit and an end of filter bit. The CPU may load instructions via a 9-bit wide port.
Instructions addressed by the program counter are retrieved over two clock cycles and are
used to process I samples on one clock cycle and Q samples on the next clock cycle. Data is
read from the data RAM at the address obtained by subtracting the index from the base
address register. It is then multiplied by the coefficient using two dedicated 18x18 multipliers
and two adders to sum the partial products. This creates a 42-bit product that is summed
alternately in two 42-bit accumulators. The accumulators are split into three 14-bit sections to
reduce carry propagation delays and addition occurs over 3 clock cycles. Each section

154

contains an adder and a multiplexer. This provides a 2-clock delay so two channels are
supported. The multiplexers have one port tied to zero so that they can be used to switch
between loading and accumulating by the signals Z3, Z4 and Z5. The final sum of products is
then rounded to either 18 or 20 bits.

Figure 8 – Noise Blanker

The noise blanker is shown in figure 8. It generates the absolute value of I samples and Q
samples by complementing negative values. These are compared to a limit and if it is
exceeded in either axis the output is set to zero. Two registers clocked on opposite edges of
the single-rate clock (sclk) align the comparitor output with the two related samples. The signal
is delayed in three registers and the fourth register is reset as the offending samples pass by.
This logic is placed between the FIR filters so that blanking occurs prior to the steep-skirted
final filter. This minimizes stretching of noise pulses.

Figure 9 – Tuner Configuration Registers

The tuner is configured via the 8 registers shown in figure 9. The center frequency is a 32-bit
word, loaded LSW first in two 16-bit segments. The FIR instructions are loaded into the filter

155

selected by the FIR bit in 9-bit segments, LSW first. The RST bit resets the FIR address
counter and inhibits filter operation during loading. The two FIR decimation values initialize
counters that delay the start of the FIR filters until a specified number of new samples have
been accumulated in data memory. Interpolation is handled by putting multiple write
instructions in the filtering programs.

The status register contains overflow flags that are set when an overflow occurs and reset
when read. The ADC overflow comes from the overflow output on the ADC. The MIX and DAC
flags signal overflow in the quadrature mixer and adder, respectively. FL1 and FL2 are
overflow flags from the two FIR filters.

3. AGC, Resampler and Clipper/Compressor

The AGC module levels the output and reduces the word size to 16 bits. It implements a
complete hang AGC system in hardware. The desired AGC output level, attack time, release
time, hang threshold and hang time are all programmable by the CPU. The AGC gain may
vary between 0 and 96 dB and the CPU may read the current value.

Figure 10 - Automatic Gain Control

The AGC logic is shown in figure 10 and makes extensive use of serial arithmetic to reduce
resources and power requirements. This is possible because the signal has been fully filtered
and down-sampled to 2.5 Msps or less. The circuit operates at 80 MHz so 32 clock cycles are
available for each sample. I and Q samples are loaded into two shift registers and then shifted
left for a number of clock cycles determined by the counter. The counter is loaded with the gain

156

exponent at the same time that data is loaded. It then counts down to zero and stops the
shifting, multiplying the data by the binary exponent. Not shown is logic that detects and flags
overflows. The gain mantissa is used in two serial multipliers to multiply by a factor of 1 to 2. It
is loaded into another shift register and the bits are shifted out MSB first. If a bit is one the
shifted signal samples are added to the shifted contents of another register. The accumulated
sum shifts left on each clock cycle. After 13 cycles, the results are available at the output.

The AGC gain is set by the top 16 bits of a 24-bit accumulator that integrates the difference
between the magnitude of the output signal and the AGC setpoint. The magnitude
determination logic is described further in the compressor/clipper section of this document.
Loop gain is controlled by a serial multiplier created by shifting the output of the setpoint
subtracter. It multiplies by a power of two that is determined by a time delay in a shift register.
Xilinx logic elements may be configured as a 16-bit shift register with an output multiplexer.
That multiplexer determines the number of stages used, the time delay and the gain. There are
three possibilities for gain. If the output signal is higher than the setpoint, the attack gain is
selected. If the signal is below the setpoint but above the hang threshold, the release gain is
used. If the signal is below the hang threshold and the hang timer has not expired, the loop
gain is set to the minimum. This allows the AGC gain to be held constant for a period after the
signal disappears and then be rapidly reduced after that period. This mechanism reduces AGC
pumping on CW and SSB signals4. It is also useful for OFDM signals that use null symbols as
delimiters.

Figure 11 - Resampling Filter

A resampling filter may be switched in for applications using baud rates that are not an integer
fraction of the ADC and DAC sampling rates. The output sample rate (OSR) may be increased
or decreased as specified by a 4-bit integer and a 24-bit fraction that determine the time

157

between output samples. The output sample rate is the input sample rate divided by this 28-bit
number and may be set to an accuracy of 0.06 PPM.

The phase accumulator controls the resampling filter. It is incremented by the OSR before the
start of each filtering cycle. If a new input sample is needed the integer portion of the output
will be non-zero. New samples are requested by decrementing the sample counter by that
value. The sample counter will go negative if the required samples are not present and the
processing pipeline will stall. It will then continue when new samples arrive and the sample
counter output goes positive. The integer portion of the phase accumulator output is treated as
overflow and does not accumulate between cycles.

The upper 12 bits of the fractional portion of the phase accumulator are added to the phase
offset from the offset shift register. The lower 12 bits of the result are used to select the
coefficients to be used in the filtering process. The upper 4 bits are added to the data index
from the tap counter so the sequence of data samples to be processed to be shifted
backwards in time. The resampling filter implements a 16-tap filter with 64 possible coefficients
for each tap. The tap counter increments from 0 to 15, 31, 47 or 63 depending on whether
there are 1, 2, 3 or 4 outputs to be generated per filtering cycle. The bottom 4 bits select data
samples and coefficients and the upper 2 bits are used to select the phase offsets stored in a
4-entry shift register.

The coefficients are stored in a 1024x18 dual-port ROM and provide a flat passband to 0.4
times the input sample rate. Coefficients are linearly interpolated in the same manner as the
DDS when the desired output sample falls between ROM entries. Incoming data is stored in
two 32-entry shift registers as it arrives. Multiplexers embedded in the shift register select the
required samples. As new samples arrive, the sample counter is incremented and added to the
data index to compensate for shifts that occur during computation. Both channels are
multiplied by the same coefficient and the results accumulated. The distortion introduced by
the resampling process should be less than -96 dBc and is less than –85 dBc on a spectrum
analyzer. A more thorough description of the arbitrary resampling process can be found in
chapter 7 of reference 5.

When transmitting, a RF compressor is available to reduce the peak to average power ratio
(PAPR) of SSB and OFDM signals. It consists of two multipliers and a memory containing 64
coefficients that are selected by the magnitude of the incoming signal. The gain profile may be
adjusted for clipping, compression or bypass. Figure 12 shows the logic used.

The magnitude of the input is estimated by the formula 7*(max + min/2)/8. Since compression
only occurs at high signal levels only the upper 8 bits of the input are examined. Gain
coefficients are stored in a shift register and the upper 6 bits of the magnitude select the
appropriate entry. Each 8-bit entry consists of a 4-bit integer and a 4-bit fraction. Low signals
levels may be boosted by up to 24 dB while high signal levels can be left unchanged or even
attenuated. The look-up table and multipliers ensure that the clipping level or compression
profile is independent of signal phase. Processing the I and Q channels independently would
have resulted in a 3 dB increase in output level when the phase is 45, 135, 225 or 315
degrees. It would also have altered the phase of the output.

158

Figure 12 - Compressor/Clipper

The resampler, AGC and compressor are configured via the 8 registers shown in figure 13.
The output sample rate is loaded in two 16-bit segments with the lower bits saved in a
temporary register until the upper bits are loaded. The output phases are loaded in reverse
order and the first N are used as determined by the INT bits.

Figure 13 – AGC, Resampler and Compressor Configuration Registers

4. Single-Carrier Modem

The CORDIC logic is shown in figure 14. There are three stages – coarse rotation, fine rotation
and output correction. The coarse rotation logic rotates the inputs by 90� or 180� so that
calculations can be done in the first quadrant. It can negate the X and/or Y inputs and may
then swap the inputs. This is determined by looking at the signs of the X and Y inputs or the
quadrant of the angle Z. The fine rotation engine consists of the three multiplexers, two 0-15-
bit shifters and three 22-bit adder-subtractors in the center of the diagram. The six extra bits
ensure the accuracy of the computations. Two extra MSBs allow for magnitude growth during
computation. Four extra LSBs limit the loss of resolution as X and Y shift right. 16 fine rotations
are performed by adding or subtracting fractions of X from Y and fractions of Y from X. At the

159

same time, the arctangent is subtracted from or added to Z. In the first rotation the multiplexers
let in the coarsely rotated data. In the next 15 rotations, the output is fed back to the input and
the shift value is incremented.

Figure 14 - CORDIC

At each step, the rotation may be clockwise or counter-clockwise as determined by the signal
subxz. In the rotate mode Z is driven towards zero by a series of rotations by 45�, 22.5� and
ever-smaller increments. In the vector mode, Y is driven towards zero. The length of the signal
vector increases by a known value with each rotation. Correction logic multiplies the final X
and Y outputs by a constant so that the magnitude remains in the �1 range. It also alters the Z
output to correct for the coarse rotation. The accuracy of the algorithm is 15 bits with full
magnitude data and decreases as the magnitude decreases. The AGC system keeps input
levels near the maximum to minimize errors. For a full description of the CORDIC algorithm
and its computational accuracy, see chapter 25 of reference 6.

The resampling filter may be configured to generate more than one output with a fixed delay
between samples. The timing recovery module then processes the phase or frequency for
each sample. Early, nominal and late samples are used to measure the slope of the signal
prior to and after the sampled data as shown in figure 15. Samples are present when IV is true
and the last sample is indicated by setting the final flag. Adjacent samples are stored in
registers and subtracted. When the final sample arrives, the clock enable signal goes true for
two cycles. This enables the adder/subtracter and the nominal-early and late-nominal signals
are accumulated. Subtraction is performed when the difference is negative so the magnitude of

160

the error is recorded. The register following the adder/subtracter stored the first result as the
second is being processed. The accumulator, shift register and subtracter form a moving
average filter that averages the two error signals over 8 sample periods. The CPU can use this
information to alter the time delay and optimize the sampling point for PSK and FSK modems.

Figure 15 – Timing Recovery

OFDM requires a different type of timing recovery. The null detector, shown in figure 16, is a
variable-length moving average filter for the signal magnitude plus additional logic and is used
to accurately detect the end of the null symbol. The input is the signal magnitude from the
CORDIC module and is added to a 24-bit accumulator. The contents of the RAM are then read
and subtracted from the top 18 bits of the accumulator to provide a received signal strength
indication (RSSI). Simultaneously, the accumulator value is written into the RAM. The address
counter is incremented after each write and is reset to zero when the symbol length is reached.
The RAM thus acts as a variable-length time delay.

The RSSI is applied to three comparators and two registers. If the RSSI is greater than the
previous maximum, the new maximum is stored in a register and used to set a low signal
threshold. While the RSSI is less than this threshold, the minimum signal level register is
updated whenever RSSI is less its current value. Each update also loads a counter with a time
delay. When the minimum signal level has passed, the count will proceed to zero and the
counter will stop. A flip-flop and gate detect this transition and issue a start of frame (SOF)
pulse. The FFT may be configured to start automatically when SOF occurs or manually by
software intervention. The time delay is usually set to be the cyclic prefix interval.

161

Figure 16 – Null Detector

The phase correlator, shown in figure 17, compares the cyclic prefix of each received symbol
with the end of the symbol from which it was copied. The input is the top 8-bit of the phase
output of the CORDIC module. As each sample arrives, the 1024 x 8 RAM is read and
subtracted from the input. At the same time, it is written to the RAM and the address counter is
incremented. The RAM acts as a variable-length shift register with the length determined by
resetting the counter when the FFT size is reached. The phase difference is added to a 12-bit
value when positive or subtracted from that value when negative and the magnitude of the
phase difference is accumulated. This is applied to a variable-length shift register whose
output is subtracted from the current accumulated value to give the average phase error over
that time interval. When the average phase error is less than 90� (¼ full scale), the minimum
value of the phase error is tracked by updating the minimum value register whenever it is
greater than the current average. An update also loads a down counter with a time delay.
Once the minimum phase error has passed the counter proceeds to zero, stops counting and a
sync pulse is emitted. The FFT module uses the sync pulse to save the current sample counter
and this information may be used to monitor the placement of the OFDM sampling window.

162

Figure 17 – Phase Correlator

Eight registers, shown in figure 18, configure the modem. The first two registers are used to
load baseband data, with the X register loaded first and the 2 samples placed in the FIFO
when the Y register is written. There are also 4 status registers. The X and Y registers should
be read in sequence and the FIFO entry will be updated after the Y input is read. The E and F
bits indicate that the FIFO is empty or full. RSSI is updated after every sample is processed,
but is not buffered as it changes slowly.

Figure 18 – Modem I/O Registers

The FM bit enables phase accumulation on transmit and phase differentiation on receive. The
FM delay determines the number of samples over which differentiation is done. There is
always one output per sample. The SSB bit enables the BFO for receive and transmit.

163

An additional FIR filter is provided that may be used for audio filtering, sideband separation,
pilot carrier tracking or FSK waveform shaping. It may be configured to implement 2 to 16
filters of 31-255 taps and may downsample by any integer factor and upsample by a factor of 1
to 7. The CPU writes data to the filter, initiates a convolution and then reads the result(s). The
filtering occurs at a rate of one tap per clock cycle and in parallel with any program that the
CPU is executing.

Figure 19 – FIR Filter

A single 1024-word dual-port RAM is used to store 16-bit data and 18-bit coefficients.
Coefficients are initialized using two output ports. The most significant 2 bits are stored in a
temporary register at one port and then combined with the least significant 16 bits written to
the second port. All coefficients for all filters must be written in sequence and the address
counter (actr) increments on the LSW write. Data is written to another output port and is stored
at an address supplied by one of 16 address counters (dctr) that are implemented with a 16 x 8
RAM. The counter used is selected by the base address register. The base address is
combined with the counter (actr or dctr) in a 4:1 multiplexer. The length configuration register
determines which RAM address bits are obtained from the counters and the base address
register. This allows the creation of 32, 64, 128 or 256-word data buffers. The base address
used must be on a 32, 64, 128 or 256-word boundary, respectively.

The filtering process starts by writing the base address of the coefficient set to a special output
port. This address loaded into the coefficient address counter (caddr) where it is incremented
as coefficients are retrieved. The base address of the current data buffer is decremented and

164

loaded into the data index counter (dindx). The index decrements as data is retrieved from the
one port of the RAM and multiplied by coefficients from the other port. The number of filters
taps is determined by the taps configuration register and is load into a down counter (cctr)
when the filter starts. The filter engine runs until that counter reaches zero. The data/coefficient
products are added to an accumulator implemented in a 34-bit wide shift register. The length of
that shift register is one if no interpolation is done. The first product must be loaded into the
shift register so a multiplexer switches the feedback from the shift register output to zero for
the first sample in the filter.

Loading multiple data words and then starting the filter provides downsampling. Upsampling is
more complicated and uses the data interpolation counter (dint). Normally this counter is zero
and does not change value. When the intrp configuration register is non-zero the counter
increments until that value is reached and resets to continue incrementing again until the
coefficient counter (cctr) goes to zero and the signal cz is true. Intrp also controls the length of
the accumulator shift register and the length of the rstacc signal that causes loading instead of
adding. A 1-bit wide shift register implements a delay line that controls the length of rstacc.

Figure 20 – FIR Filter Configuration and Status Registers

The I/O ports used by the filter coprocessor are shown in figure 20. Note that the first 7 status
registers map to the accumulator shift register. Only the first is used when there is no
downsampling. The last status register contains flags. The RDY flag is 0 when the coprocessor
is busy and 1 when the coprocessor is idle. The OVF flag is set if the currently selected
accumulator has overflowed.

5. Fast Fourier Transform Module

The FFT module is shown in figure 21 and uses free intellectual property from Xilinx. The Xilinx
IP is not shown in detail but a simplified version of the surrounding logic is shown and it is
useful to understand how the FFT is controlled. A good description of the FFT algorithm can be
found chapter 4 of reference 7.

165

The leftmost dual-port RAM is 512 entries by 32-bits and is split in half with one half containing
the data in the process of being received or transmitted and the other half containing the data
being loaded or unloaded by the FFT. The swap bit is inverted to switch halves when a new
sample period starts. The counter (sctr) on the left-hand side of the diagram controls sampling.
It is reset when not receiving or transmitting and enabled when transmission starts or when the
SOF (start of frame) input is pulsed. It counts when RIV is true (reception) or TOE is true
(transmission). The output is the address for reading data from (TDO) or writing data to (RDI)
the RAM and counts up until the number of samples in the FFT (fftlen) is reached. At that point
it is loaded with the inverted cyclic prefix length (cplen) and counts up from that negative
number. Writing to the RAM is inhibited during the cyclic prefix. The upper 1, 2 or 3 bits of the
RAM address are removed by the mask logic for 128, 64 and 32-point FFTs, respectively.
During reception, the FFT starts when the data carrier detect (DCD) input is true and the
counter is loaded with cplen. During transmission, DCD is ignored.

Figure 21 – FFT and Buffer Memory

The Xilinx FFT module provides 5-8-bit addresses when reading data into the N input or writing
data from the X output. These addresses are multiplexed into the port B RAM address port for
time-oriented data. Three clock cycles are provided for reading data so there is a 2-clock delay
in the data path from the leftmost RAM. The rightmost RAM stores data ordered by frequency
and is connected directly to the CPU on the port A side. The other side is accessed by the FFT
via logic that converts between rectangular and polar coordinate systems. Conversion to polar
coordinates (phase and magnitude) takes time so there are six pipeline registers in the
address path. The address is modified by a 4-input multiplexer to center the zero-frequency
sample in each buffer with positive and negative frequency samples on either side. The RAM
is 1024x16-bits but is divided into four 256-sample by 16-bit buffers. The upper 2 address bits
are provided by a base address counter which is incremented when the FFT is complete

166

(receive) or the FFT is started (transmit). This value is incremented or decremented by one
and provided as status to the CPU.

The other status port is the sample phase register that saves the sample counter value when
SYNC pulses are received. When the ensof configuration bit is true these pulses will also reset
the sample counter. There are four other status bits that are not shown in the logic diagram but
are shown in the I/O port diagram, below.

Figure 22 – Polar to Rectangular Conversion

The input to the IFFT consists of a 4-bit phase and a 4-bit magnitude. These are converted to
Cartesian coordinates by the circuit in figure 21. Two 16 entry by 6-bit ROMs contain sine and
cosine look-up tables. The outputs can be increased by approximately 3 dB by multiplying by
1.5. 6 dB steps are obtained by using two 8-input multiplexers as shifters. One multiplexer
input is zero to allow disabling the subcarrier. This gives a 39-dB range.

Figure 23 – Rectangular to Polar Conversion

The output of the FFT is converted from 16 x 16-bit Cartesian coordinates to 5 x 7-bit polar
coordinates by the circuit in figure 23. CORDIC is not used as it would require more resources
given such limited precision. The inputs are first converted to a floating-point format with a 4-bit
exponent, two sign bits and two 4-bit fractions. One X/Y pair is converted per clock cycle by

167

using four 2-input multiplexers and making a decision at each stage to shift by 8, 4, 2 or 1 bit
positions as the samples travel through the circuit. The 5 x 5-bit output is then rotated into the
first quadrant by taking the absolute value and swapping X and Y when necessary. The
arctangent is obtained from a 256x4 ROM and the output is adjusted back to the correct
quadrant by an adder. This process reduces the size of the ROM by a factor of 4. The output is
5 bits of phase that is suitable for soft-decision Viterbi decoding of 8PSK. The logarithm of the
magnitude is obtained from the 64x3 ROM and added to the exponent. This gives a 7-bit
logarithmic magnitude output.

Figure 24 – FFT Configuration and Status Registers

The FFT module is configured via the 5 registers shown in figure 24. The FFT should be reset
before changing other parameters. The current address register contains the address of the
256-word buffer to be used to prepare the next symbol to be transmitted or the location of the
buffer with the last received symbol. The INT bit is set when the buffer address changes. The
SOF and EOF bits can be used to determine the start and end of the frame. SOF is set when a
null symbol is detected and EOF is set when RSSI drops by 6 or 12 dB depending on the
setting of the H bit in the modem configuration.

6. Error Control Logic

Many communications protocols use cyclic redundancy checks (CRCs) for error detection.
Calculations on a general-purpose processor are time consuming, as it requires bit
manipulation. The CRC hardware shown in figure 25 provides a means to generate and check
the two most commonly used CRCs quickly. The CPU writes bytes or words in parallel to the

168

two shift registers. This sets a counter to the number of dibits to be processed and enables the
CRC-16 and CRC-32 logic. The shift register outputs are multiplexed at twice the CPU clock
rate so the CRC logic operates at 160 Mbps. Thus a word can be processed in 8 clock cycles
or a byte in 4 clock cycles.

CRCs can be computed in parallel with data copying by the CPU. The block copy routine is
modified to output a word between the memory read and memory write. After the transfer is
complete, the CPU inputs one of the accumulated CRCs and appends it to the data. CRC-32 is
the algorithm used by Ethernet and CRC-16 is the algorithm used by HDLC and AX.25.

Figure 25 – Cyclic Redundancy Check Logic

Figure 26 – CRC Configuration and Status Registers

CRCs only allow error detection, but convolutional codes, including trellis-coded modulation,
allow error correction. They may be implemented using the programmable convolutional
encoder and Viterbi decoder modules.

The encoder exclusive-ORs delayed versions of the uncoded data bits to generate coded
outputs. Configuration registers select the bits to be used. Figure 27 shows the logic for
encoding one bit. The configuration register, AND gates and exclusive-OR gate are replicated
4 times. Two to four outputs may be generated for each input so that BPSK, QPSK and 8PSK
can be accommodated. Either natural or gray coding may be selected.

169

Figure 27 – Convolutional Encoder

The data input port is used to start encoding and the result may be read from a status port with
the next instruction. Two bits may be encoded into 8PSK or one bit may be encoded into
QPSK. Alternatively, one bit may be encoded into two BPSK channels.

Figure 28 – Encoder Configuration and Status Registers

The Viterbi algorithm is an efficient method to decode convolutionally encoded data. It keeps
track of the distance between symbols in a sequence in order to estimate the most-likely
transmitted symbol in a noisy environment. The encoder assumes a variety of states as it
transmits data and the decoder determines the probability of it being in a particular state by
comparing distances.

170

Figure 29 – Viterbi Decoder

Received symbols are written to a 16-entry FIFO in the Viterbi decoder. As symbols are
extracted from the FIFO, they are processed once for each possible new state of the
transmitting convolutional coder. The received symbol is compared to the expected symbol for
a particular previous state and the phase error is converted to a distance. This new distance is
added to the cumulative distance to the previous state retrieved from the 32-entry dual-port
metrics RAM and compared to the current minimum distance. If it is less than the minimum it
replaces the minimum and the previous state is saved. This process generates a set of metrics
measuring the probability that each input symbol matches each possible transmitted symbol.
The likely previous state for each possible new state is stored in a dual-port block RAM.

The block RAM can store path information for up to 256 symbols. After all symbols have been
processed, the contents of the ROM are scanned in reverse order, tracing back over the most
likely path that the transmitting encoder took. The traceback logic requires that the last state be
zero. As traceback occurs, the states are looked up in a bit map and the decoded data bits are
shifted into an eight-dibit register. The bit values corresponding to each state are loaded in
reverse order via the bit decoding configuration register. The traceback process stops on every
eight symbol and the OV bit is set to allow the CPU to read the decoded byte or word via the
first two status registers. The number of symbols remaining is contained in the lower 8 bits of
the third status register.

171

Figure 30 – Viterbi Decoder Configuration and Status Registers

The states and symbols assumed in the decoding process are stored as a program in a 64-
entry by 11-bit shift register. The decoder can be programmed for any forward error-correcting
code with less than 16 states using 2, 4 or 8-level signaling. Instructions are loaded via the
path list input register shown in figure 30. The number of paths to evaluate is also specified
and determines the number of clock cycles required for decoding. Each path requires 4 clocks
and 4 additional clocks are required for pipeline delays.

Figure 31 – BCH Encoder/Decoder

A Bose Chaudhuri Hocquenghem (BCH) CODEC module supports block codes with 8-247
data bits and 3-8 parity bits. It may be configured for specific codes by specifying the length of
the shift register and placement of the feedback taps (G1-7). The word width (N) is variable so
that encoding or decoding of 1 to 16 data bits may occur in parallel at one clock cycle per bit.

172

The BCH algorithm is executes simultaneously on multiple bit streams where each bit in a
word is part of an independent stream. When transmitting, the CPU writes data to an output
port with ACC set to 1. This loads the shift register and on each of the following clock cycles
one data bit passes through the exclusive-OR on the extreme right side of the diagram where it
is combined with the currently selected bit in each shift register. On each clock cycle, all shift
registers advance and the next bit is processed. Setting ACC to 0 causes the written data to be
ignored but the next accumulated parity bits are moved into the shift register where they can
be accessed at an input port and transmitted serially. When receiving, ACC is set to 1 and both
data and parity words are written to the output port. The accumulated syndrome for each bit
can be read by setting the width register to the bit number. The CPU then uses any non-zero
syndrome for error correction.

Figure 32 – BCH Configuration and Status Registers

7. I/O Ports

Several methods are provided for the DCP-3 to communicate digitally with other devices. The
internal circuitry is not described in this document, as it concentrates on the signal-processing
hardware.

Figure 33 - Ethernet Configuration and Status Registers

The Ethernet port uses a single transmit buffer and double-buffered receive. 2 kB of dual-port
RAM is provided to store the frame to be transmitted and 4 kB of dual-port RAM is provided to
buffer received frames. The CPU may access one received frame at the same time another is
being received. The hardware supports only full-duplex operation at 100 Mbps at this time.
Transmission is accomplished by writing a frame and its preamble to the transmit buffer and
then outputting the length to port 1 as shown in figure 33. The CPU then checks the TXE bit in
the status register for completion of transmission before writing another frame. The CPU may
also check the RXR bit for received frames and obtain the length of the received frame. It then

173

accesses the receiver buffer memory to retrieve the frame. One half of the buffer is visible
which contains the first frame received. When the CPU signals done by writing to port 0, the
next frame is presented.

A universal asynchronous receiver/transmitter (UART) is provided for low-speed
communication. It is used by the loader firmware for downloading software and may be used
for other purposes, such as implementing a TNC. Signaling rates between 110 and 460,800
baud are supported. The baud rate divisor is set to generate the appropriate clock at 16 times
the symbol rate. 15-byte receive and transmit FIFOs are provided and may be read and written
via port 20. Status flags indicate when the transmit FIFO is empty (TXE), the transmit FIFO is
ready for data (TXR), the receive FIFO is full (RXF) and received data is available (RXR). The
receive FIFO has a framing error bit for each entry. The UART supports only 8-bit characters
without parity.

Figure 34 - UART Configuration and Status Registers

Note that the Ethernet interface and UART do not implement CRC generation and checking.
This may be done by using the CRC hardware described previously.

There are two SPI ports. One is used to operate the low-speed DAC and the other is
connected to the onboard serial flash memory. Writing a byte to the SPI transmit data port
sends a command to the flash memory. Simultaneously, data is transmitted from the flash
memory and appears in the received data port. The data transmission rate is fixed at 20 Mbps
and the CPU must wait 32 clock cycles for operations to complete. Ports A and B control the
slave select line, which must be active when sending commands to the flash memory.

Figure 35 - SPI Configuration and Status Registers

The lower portion of the serial flash memory contains the FPGA configuration that is loaded
automatically when power is applied so it must not be disturbed. However, the upper portion
may be used for data and program storage.

174

The DAC port is 16-bits wide and is write-only. The lower 12 bits control the DAC and the
upper 4 bits must be set to zero. 64 clock cycles are required after the write for data to be
transferred to the DAC.

Figure 36 – Low-Speed DAC Output Register

An I2S port is provided to attach an external 1 or 2-channel 16-24-bit audio CODEC operating
at 32 ksps. Data for the left and right channels is written to separate pairs of output ports. The
least significant byte (LSB) is written first and is zeroed after every write to the most significant
word (MSW). The MSW write causes data to be transmitted. Use of the left and right channels
must be alternated for stereo CODECs. Left and right channel data is read from a common
pair of input ports and the “Left” status flag indicates the active channel. Both ports have a 15-
entry FIFO. Status flags indicate FIFO status and input sample source (left or right channel).

Figure 37 - I2S Configuration and Status Registers

8. Conclusion

The combination of a fixed hardware configuration stored in flash memory plus downloadable
software has proven to be very flexible. Much development time was spent optimizing the use
of FPGA resources. For example, dedicated multipliers are used in the FIR filters where high
speed is necessary and serial multipliers are used in the AGC logic after the sample rate has
been reduced. Logic such as the CORDIC module was designed for reuse when switching
from transmit to receive so little standard IP was used other than the FFT module. That
hardware can now be leveraged for multiple applications by changing the software. The
current program implements a transceiver for AM, FM and SSB plus a high-speed OFDM
modem. The resampler and timing recovery hardware should allow implementation of a high-
speed AX.25 TNC in the future.

Several PC-based programs were developed for use with the DCP-3, including an assembler
for the CPU and utilities to format configuration information for loading into flash memory.
These programs and the complete Verilog source code for the FPGA are available on the
TAPR web site. The source code and it derivatives are provided for personal non-profit
educational use in the Amateur Radio Service and are not licensed for redistribution.

175

Since the hardware is defined in Verilog it can be ported to newer and denser FPGAs. The
XC3S500 was first shipped in 2006. An XC3S1400A FPGA can now provide more than twice
the logic and 60% more memory for little additional cost. This would allow use of ADCs and
DACs up to 160 Msps, faster filters and more complex signal constellations for higher data rate
OFDM modems. At a somewhat higher price, Spartan-6 series FPGAs can eventually provide
even more memory and logic. I plan to make a new version of the board in the near future. In
the mean time, I’ll be using this one on the air.

9. References

1. John B. Stephensen, “Software Defined Radios for Digital Communications”,
November/December 2004 QEX.

2. John B. Stephensen, “A Soft Processor for DSP”, Winter 2009 Packet Status Register.

3. Andreas Chrysafis, “Digital Sine-Wave Synthesis using the DSP56001/2”, Motorola Signal
Processing Division, 1988.

4. William Sabin, “Automatic Gain Control for CW Reception”, QST, July 1963.

5. Fredric J. Harris, “Multirate Signal Processing for Communication Systems”, ISBN 0-13-
146511-2, Prentice-Hall, 2004.

6. Scott Hauck, Andre DeHon, “Reconfigurable Computing – The Theory and Practice of
FPGA-Based Computation”, ISBN 978-0-12-370522-8, Elsevier, Inc., 2008.

7. Richard G. Lyons, “Understanding Digital Signal Processing”, ISBN 0-201-63467-8,
Addison-Wesley, 1997.

176

Appendix A – DCP-3 Schematic Diagram

The following 6 pages contain the schematic diagram of the DCP-3 digital signal
processing PCB:

1. Ethernet Interface
2. High-speed Analog to Digital Converter
3. Serial Flash Memory and Low-speed DAC
4. High-speed Digital to Analog Converter
5. Voltage Regulator and JTAG Interface
6. Clock Oscillators

The schematic shows a Xilinx XC3S250E FPGA but the XC3S500E has the
same pin configuration in the 100-pin TQFP package.

177

178

179

180

181

182

183

CPU16B Instruction Set Page 1 of 14

05/29/10

Appendix B - CPU16B instruction Set

B1. Introduction

The CPU16B is a 16-bit Von Neuman architecture processor with a single address space
shared between data and instructions. The dual-port memory provided by FPGAs allows
simultaneous instruction fetches and data manipulation giving the performance of a Harvard
architecture machine. The instruction set uses 5 basic formats as shown in figure 1.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CALL Type Absolute Address

JMP/LOOP/RET Type Op. Condition Relative Address
Immediate Data Type Op. Constant A

I/O Type Operation Port A
ALU Type Operation Modifier B/C A

Figure 1 – Basic Instruction Format

Program-control instructions use two address formats. Call instructions use a 14-bit absolute
address and can access 16,384 words of program memory. Jump instructions use a 9-bit
relative address and can access the previous 255 or next 256 instruction locations. The jump
is taken if the condition specified by a 3-bit field is satisfied. Otherwise instruction execution
continues in sequence. The full program address space can be accessed by loop instructions
that use a 14-bit absolute addresses stored by the mark instruction. This allows backward
jumps to any location.

ALU instructions may operate on 16-bit words, the lower 4 or 8-bits of a word or any single bit.
Most use register A as the source for one operand and the destination for the result. The
second operand may be register B or a signed 8 or 16-bit constant.

I/O instructions use a 7-bit direct address to identify up to 128 16-bit wide I/O ports. Memory
access instructions use 14-bit indirect addresses stored in register B plus an offset from the
modifier field. Register A contains the data to be written to memory and is the repository for
any data read from memory.

Assembler syntax uses 3 fields. The label field contains either blank space or an alphanumeric
name followed by a colon. The operation field contains a 2-4-character instruction name. The
operand field contains nothing, a single parameter or two to three parameters separated by
commas.

Label: OP Rd,Rs,mod ; comments

Operands may be register names (SP and R1-R15), address labels or constants in binary,
decimal, hexadecimal or alphanumeric format. A binary number starts with “#”, a hexadecimal
number starts with “$” and a 1 or 2 character string is delimited by single quotes (‘).

184

CPU16B Instruction Set Page 2 of 14

05/29/10

B2. Program Flow Control

The program control instructions are listed in figure 2. Calls are unconditional and the call uses
absolute addresses. The jump, loop and return instructions may be conditional or
unconditional. Jump instructions use addresses that are relative to the program counter.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CALL 00 Absolute Address
JMP 01 00 Condition Relative Address
RET 01 01 Condition 0

LOOP 01 01 Condition 1
MARK 01 10 0 0
STRA 01 10 0 1
REP 01 10 1 000 Count

Figure 2 – Program Control Instructions

Three condition flags may be tested as shown in figure 3. The C, V and Z bits are the carry,
overflow and zero flags for comparison operations and for 16-bit arithmetic operations,
including add, subtract, increment and decrement. The C bit is also altered by bit test and
shifting operations. The Z bit is necessary for loop control and the C bit is necessary for multi-
word shifts and software multiplication and division routines.

Condition Description
000 Always
001 Never (NOP)
010 V set by previous arithmetic or comparison instruction
011 V reset by previous arithmetic or comparison instruction
100 Z set by previous arithmetic or comparison instruction
101 Z reset by previous arithmetic or comparison instruction
110 C set by previous arithmetic, comparison, shift or bit test instruction
111 C reset by previous arithmetic, comparison, shift or bit test instruction

Figure 3 – Jump Conditions

The assembly language representation is an instruction name that specifies any condition
code followed by an operand specifying the absolute address for calls or the relative address
for jumps. Mark, return and loop instructions have no operand. Repeat has a single numeric
operand.

JMP loads the program counter (PC) with the specified address and continues program
execution from that location. JV, JNV, JZ, JNZ, JC and JNC jump if the V bit is true, the V bit is
false, the Z bit is set, the Z bit is reset, the C bit is set or the C bit is reset. Otherwise,
execution continues with the next instruction in sequence. The operand may be a label or a
numeric value.

185

CPU16B Instruction Set Page 3 of 14

05/29/10

Here: JMP $0
JNZ there

CALL pushes the next instruction address onto the return address stack and then jumps to the
specified address. The address is stored temporarily in a register while the stack pointer is
incremented and then written into the dedicated RAM holding the return address stack. It
contains up to 16 return addresses to allow subroutine nesting up to 16 levels. There is no
overflow or underflow indication. . The operand may be a label or a numeric value.

Here: CALL $0
CALL There

The RET (return) instruction restores the address in the address stack to the program counter
and continues execution from that location. RV, RNV, RZ, RNZ, RC and RNC return if the V bit
is true, the V bit is false, the Z bit is set, the Z bit is reset, the C bit is set or the C bit is reset.
The stack pointer is decremented after the address is read. There are no operands.

There:RET

The MARK instruction pushes the next instruction address onto the return address stack
without jumping. It is used with the LOOP instructions for long backward jumps.

The STRA instruction pushes the contents of the selected register onto the return address
stack. It is used with the RET instruction for indirect jumps.

STRA R15

The LOOP instruction restores the address in the return address stack to the program counter
and continues execution from that location. LV, LNV, LZ, LNZ, LC and LNC loop if the L bit is
true, the V bit is false, the Z bit is set, the Z bit is reset, the C bit is set or the C bit is reset. The
stack pointer is decremented if the loop is exited.

LDL R1,256
MARK
NOP ; do this 256 times
DEC R1
LNZ

The REP (repeat) instruction causes the next instruction to execute count + 2 times. It inhibits
incrementing the program counter so the same instruction is issued multiple times with no
additional overhead. The assembler calculates the correct value for the count field given the
number of times to repeat the next instruction.

REP 256
NOP ; do this 256 times

186

CPU16B Instruction Set Page 4 of 14

05/29/10

B3. Memory Access and I/O

Figure 4 shows the format of the immediate data, I/O and memory access instructions. They
do not alter any flags.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MVI 01 11 Data A
LDH 10 101 101 Data
WR 10 110 000 B A

WRO 10 110 Offset B A
OUT 10 111 Port A
IN 11 000 Port A
RD 11 001 000 B A

RDO 11 001 Offset B A

Figure 4 – I/O and Memory Access Instructions

The MVI instruction replaces the lower 8 bits of register A with immediate data and the sign is
extended to the upper 8 bits. This can be modified by the LDH instruction that loads 8 bits of
data into a special register. Those 8 bits replace the MSB in any MVI, ADI or CPI instruction
that follows. The MVIW and LOAD pseudo-operations generate one LDH and one MVI
instruction to load a 16-bit constant into a register. The LDA pseudo-operation does the same
for loading a 14-bit address into a register.

MVI #01111110
MVIW $3AB4
LDA label

Output instructions use direct addressing to access up to 128 ports up to 16 bits wide. OUT
copies the contents of register A to the selected port by placing the port address on IOADDR,
the data on DOUT and asserting IOWR. Input instructions use direct addressing to access up
to 128 ports up to 16 bits wide. IN copies the contents of the selected port from the DIN bus to
register A and asserts IORD. IN takes 2 clock cycles to allow for propagation delays.

OUT R1,48 ; numeric port number
IN R1,data ; port number defined by EQU

Memory access instructions use register indirect addressing of up to 65,536 words of memory.
Writes complete in one clock cycle and reads take two cycles. Write with offset (WRO) copies
the contents of register A to the memory location at the address in register B plus a 3-bit offset
contained in the instruction. Read with offset (RDO) copies the contents of the memory
location at the address in register B plus a 3-bit offset contained in the instruction to register A.
The write (WR) and read (RD) instructions are the same but with a fixed offset of zero.

RDO R2,R1,0 ; contents of memory at address in R1 copied to R2
RD R2,R1 ; contents of memory at address in R1 copied to R2
WR R3,R2 ; contents of R3 copied to memory at address in R2

187

CPU16B Instruction Set Page 5 of 14

05/29/10

B4. Arithmetic Operations

The 4, 8 and 16-bit arithmetic instructions are encoded as shown in figure 5. The carry,
overflow and zero flags are updated for 16-bit arithmetic operations but not for 4-bit or 8-bit
operations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ADI 10 00 C A
INC 10 00 00000000 A
SBI 10 00 -C A
DEC 10 00 11111111 A
CPI 10 01 C A
CPZ 10 01 00000000 A
CMP 10 101 011 B A
CLC 10 101 110 0000 0000
STC 10 101 110 0001 0000

CMPC 10 101 111 B A
MOV 11 010 000 B A
MVN 11 010 001 B A
NEG 11 010 001 A A
ADD 11 010 010 B A
SUB 11 010 011 B A

MOVC 11 010 100 B A
MVNC 11 010 101 B A
NEGC 11 010 101 A A
ADC 11 010 110 B A
SBC 11 010 111 B A

MOV8 11 011 000 B A
MVN8 11 011 001 B A
ADD8 11 011 010 B A
SUB8 11 011 011 B A
MOV4 11 011 000 B A
MVN4 11 011 001 B A
ADD4 11 011 010 B A
SUB4 11 011 011 B A

Figure 5 –Arithmetic Instructions

ADI adds an 8-bit signed constant to register A (A=A+C). SBI generates the same instruction
but negates the constant to subtract from register A (A=A-C). INC and DEC provide an
alternate way of specifying ADI RA, 1 and SBI RA, 1. ADIW and SBIW prefix an LDH instruction
for 16-bit operations.

ADI R2,1 ; 2 ways to increment R2 by 1
INC R2

188

CPU16B Instruction Set Page 6 of 14

05/29/10

CPI subtracts and 8-bit signed constant from register A and sets the zero and carry flags. No
register is modified. CPZ provides a shorthand way of specifying CPI RA, 0. CPIW generates
an LDH followed by a CPI for 16-bit comparisons.

CPI R1,0 ; 2 ways to compare R1 to zero
CPZ R1
CPIW R2,3456

STC and CLC set and clear the carry flag, respectively.

STC ; set carry
CLC ; clear carry

CMP subtracts register B from register A and sets the zero and carry flags. No register is
modified. CMPC is the same, but propagates the carry bit for larger comparisons.

CMP R2,R1 ; compare R2 to R1

MOV copies register B to register A. MVN copies the two’s complement of register B to register
A. MOVC and MVNC perform the same operations but propagate the carry bit. NEG and
NEGC provide an alternate way to specify MVN RN,RN and MVNC RN,RN.

MOV R2,R1 ; copy R1 to R2 and set flags
NEG R2 ; negate R2
MVN R2,R1 ; copy negative of R1 to R2

ADD adds register B to register A and leaves the result in register A (A=A+B). SUB subtracts
register B from register A and leaves the result in register A (A=A-B). ADC and SBC are the
same, but propagate the carry bit for larger arithmetic operations.

ADD R1,R3 ; 32-bit add (R2,R1 + R4,R3)
ADC R2,R4

MOV8 copies the contents of register B into the lower byte of register A. MVN8 negates the
byte being copied. NEG8 provides an alternate way to specify MVN8 RN,RN.

MOV8 R2,R1 ; copy LSB of R1 to R2 without affecting flags
MVN8 R2,R1 ; same, but resultant byte is negated

ADD8 and SUB8 add or subtract the lower byte in B from the lower byte in A without affecting
the upper byte (A7-0 = A7-0 � B7-0 and A15-8 = A15-8).

ADD8 R2,R1
SUB8 R2,R1

MOV4, MVN4, NEG4, ADD4 and SUB4 perform the same operations on the lower 4 bits
without affecting the upper 12 bits.

189

CPU16B Instruction Set Page 7 of 14

05/29/10

B5. Logical Operations

The logic unit operates on two 16-bit inputs (A and B) or on one bit from input A. The encoding
is shown in figure 6.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NOT 11 100 000 B A
AND 11 100 001 B A
OR 11 100 010 B A

XOR 11 100 011 B A
MASK 11 100 100 C A
RST 11 100 101 C A
SET 11 100 110 C A
INV 11 100 111 C A

Figure 6 – Logical Instructions

Four instructions perform logical operations between register A and register B and four
instructions perform logical operations on bits in register A.

NOT copies the one’s complement of register B to register A. OR sets bits in register A when
either of the corresponding bits in register A or register B are 1. XOR sets bits if only one of the
two corresponding bits is 1. AND sets bits in register A if the corresponding bits in register A
and register B are both 1.

NOT R1,R1 ; R1 <- ~R1
OR R2,R1 ; R2 <- R2 | R1
XOR R3,R1 ; R3 <- R3 ^ R1
AND R4,R1 ; R4 <- R4 & R1

MASK selects the lower 0-15 bits of register A by zeroing the upper bits.

MASK R6,8 ; zero upper byte of R0

The bit manipulation instructions modify register A. RST and SET change the value of the bit
selected by C to 0 and 1, respectively. INV complements the value of the selected bit.

RST R7,1 ; clear bit 0
SET R7,15 ; set bit 15
INV R7,7 ; invert bit 7

190

CPU16B Instruction Set Page 8 of 14

05/29/10

B6. Shift, Rotate and Sign Extension Operations

Shift and rotate operations are implemented by changing the order of bits in registers. In
addition, individual bits can be copied into the carry bit. Jumps can then be made conditional
on the value of that bit. The sign bit on 8-bit bytes may also be extended to 16-bit words.

Figure 7 shows how these instructions are encoded. Note that additional operations are
available by using different values for bits 7-4 in the instruction. The most useful instructions
are documented here.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TST 10 101 100 C A

MLLS 11 101 000 B A
SXL 11 101 000 A A

MHLS 11 101 001 B A
SXH 11 101 001 A A
INS4 11 101 010 B A
ROR4 11 101 010 A A
INS8 11 101 011 B A

SWAP 11 101 011 A A
IN16 11 101 100 B A
ROL4 11 101 100 A A
REV 11 101 101 B A
ROR 11 101 110 0000 A
ROL 11 101 111 0101 A
RRC 11 101 110 1000 A
RLC 11 101 111 1001 A
LSR 11 101 110 1100 A
LSL 11 101 111 1101 A
ASR 11 101 110 0100 A
SHL 11 101 110 C A
SHR 11 101 111 C A

Figure 7 – Shift and Rotate Instructions

TST copies bit C of register A to the carry flag.

TST R5,4 ; copy bit 4 to carry flag

MLLS copies the least significant byte of register B to the least significant byte of register A
and then extends the sign in A to fill 16 bits. MHLS copies the most significant byte of register
B to the least significant byte of register A and then extends the sign in A to fill 16 bits. SXL
and SXH provide alternate ways of specifying MLLS RA, RA and MHLS RA, RA.

MLLS R3,R1 ; split word in R3 into LSB in R1 and MSB in R2
MHLS R3,R2
SXL R3 ; remove upper byte in R0 and sign extend lower byte

191

CPU16B Instruction Set Page 9 of 14

05/29/10

INS4 copies the lower 4 bits of register B to the upper 4 bits of register A after shifting the
upper 12 bits of register A to the right. INS8 copies the lower 8 bits of register B to the upper 8
bits of register A after shifting the upper 8 bits of register A to the right. INS4 copies the lower
12 bits of register B to the upper 12 bits of register A after shifting the upper 4 bits of register A
to the right. ROR4, SWAP and ROL4 provide alternate ways of specifying INS4 RA, RA, INS8
RA, RA and IN12 RA, RA.

INS4 R1,R2 ; copy LS 4 bits of R2 to bits 15-12 of R1 and shift bits 15-4 to 11-0
ROR4 R1 ; rotate R0 right by 4 bits

REV reverses the order of the bits while copying from register B to register A. Bits 15 and 0 are
swapped, bits 14 and 1 are swapped, etc.

LDL R1,$57
REV R1,R1 ; 01010111 -> 11101010

ROL and ROR rotate the contents of register A left or right by one bit with bit 15 replacing bit 0
or bit 0 replacing bit 15, respectively. RLC and RRC rotate the contents of register A left or
right by one bit with the carry bit replacing bit 0 or bit 15, respectively. The carry bit contains
the previous value of bit 15 after ROL or RLC and bit 0 after ROR or RRC.

LOAD R1,$F0 ; R1=11110000
ROR R1 ; R1=01111000, C=0
ROL R1 ; R1=11110000, C=0
RLC R1 ; R1=11100000, C=1
RRC R1 ; R1=11110000, C=0

LSL shifts the contents of register A left by one bit and clears bit 0 while setting the carry bit to
the previous value of bit 15. LSR shifts the contents of register A right by one bit and clears bit
15 while setting the carry bit to the previous value of bit 0.

LOAD R2,$FF ; R2=11111111
LSL R2 ; R2=11111110, C=1
LSR R2 ; R2=01111111, C=0

ASR shifts the contents of register A right by one bit without affecting bit 15. The carry register
contains the previous value of bit 0.

LOAD R1,-2 ; R1=11111110
ASR R1 ; R1=11111111 (-1), C=0

192

CPU16B Instruction Set Page 10 of 14

05/29/10

The SHL and SHR instructions provide a means to generate additional types of 1-bit shifts as
shown below:

C Carry Flag LSB or MSB
00x0 Bit 0 Bit 0
00x1 Bit 15 Bit 0
01x0 Bit 0 Bit 15
01x1 Bit 15 Bit 15
10x0 Bit 0 Carry flag
10x1 Bit 15 Carry flag
1100 Bit 0 0
1101 Bit 15 0
1110 Bit 0 1
1111 Bit 15 1

Figure 8 – SHL and SHR Modifier Field Encoding

The value of the bit shifted into the LSB during a left shift (SHL) or into the MSB during a right
shift (SHR) may be obtained from the carry flag or fixed at 0 or 1. Either the most or least
significant bit can be copied to the carry flag.

193

CPU16B Instruction Set Page 11 of 14

05/29/10

B7. Optional Multiply-Accumulate Instructions

There are 10 multiply-accumulate instructions, as listed in figure 9. Type 2 instructions are
used to start multiplication with options selected by the modifier field. The instructions
complete in 1 cycle but results require 2 instruction cycles to become available. Type 3
instructions are used to copy the results into general-purpose registers.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
UMUL 10 100 000 B A
UMLN 10 100 001 B A
UMAC 10 100 010 B A
UMSB 10 100 011 B A
MUL 10 100 100 B A

MULN 10 100 101 B A
MAC 10 100 110 B A

MSUB 10 100 111 B A
LPL 11 110 000 0000 A
LPH 11 110 001 0000 A

Figure 9 – Multiply Instructions

MUL performs a 16-bit by 16-bit signed multiply and leaves the result in a 32-bit accumulator.
UMUL performs an unsigned multiply. MULN and UMLN perform signed and unsigned
multiplies and negate the result.

MAC and UMAC perform signed and unsigned multiplies and add the result to the existing
accumulator contents. MSUB and UMSB perform signed and unsigned multiplication and
subtract the result from the accumulator. Operands may be introduced at a rate of one pair per
instruction cycle and the results will be available on the next instruction cycle after the final
operands are loaded.

LPH provides the upper 16-bits of the accumulator and LPL provides the lower 16 bits of the
accumulator.

The MAC unit is useful for complex multiplies. CI = AIBI - AJBJ can be implemented with a MUL
instruction followed by MSUB, LPH and LPL instructions. CJ = AIBJ + AJBI can be implemented
with a MUL instruction followed by MAC, LPH and LPL instructions. The following code
fragment performs a complex multiply on R1/R2 and R3/R4 and returns the result in R5-R8.

MUL R1,R3 ; AIBI

MSUB R2,R4 ; AIBI - AJBJ

LPL R5
LPH R6
MUL R1,R4 ; AIBJ

MAC R2,R3 ; AIBJ + AJBI

LPL R7
LPH R8

194

CPU16B Instruction Set Page 12 of 14

05/29/10

B8. Optional Division Instructions

There are 4 division-related instructions that are formatted as shown in figure 10. The division
operations consume many clock cycles, but may occur in parallel with other operations. The
programmer must insure that a new division operation is not issued until the previous one has
been completed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FDIV 10 101 000 0000 0000
IDIV 10 101 001 B A
LQ 11 110 010 0000 A
LR 11 110 011 0000 A

Figure 10 – Division Instructions

IDIV performs a 16-bit by 16-bit unsigned integer division leaving a 16-bit quotient and 16-bit
remainder. A is divided by B and the result is left in the quotient and remainder registers after
17 clock cycles.

FDIV continues the calculation in order to generate the fractional portion of the quotient in Q
after 17 more clock cycles.

The LQ and LR instructions read the quotient and remainder registers. The upper bit of R may
be monitored to determine when the calculation is complete. It is 1 during computation.

LOAD R2,255
LOAD R1,4
IDIV R2,R1 ; 255 � 4
REP 17
NOP
LQ R1 ; 63
LR R2 ; 3
FDIV ; 3 � 4
REP 16
NOP
LQ R3 ; R3 = 1100000000000000 = ¾

195

CPU16B Instruction Set Page 13 of 14

05/29/10

B9. Stack Operations

The register R0 may be specified by SP and is commonly used as a stack pointer for data
storage. The assembler will generate 2-instruction sequences for PUSH and POP as follows:

DEC SP ; PUSH RN

WR RN,SP

RD RN,SP ; POP RN

INC SP

By default, the use of R0 is suppressed to minimize register allocation errors.

B10. Pseudo-Instructions

The PRAM instruction is used to accommodate different types and amounts of program
memory. UCF files are used to initialize program memory when the FPGA is configured.
Hexadecimal format files may be downloaded after FPGA configuration.

Modifier Result
0 Generate hex file (any length)
1 UCF file for one 1k x 16 RAM
2 UCF file for two 2k x 8 RAMs
4 UCF file for four 4k x 4 RAMs

Figure 11 – PRAM Instruction

REG assigns a label to the specified register and EQU assigns a label to the specified numeric
constant.

Label REG R7
one EQU 1

DW and DB initialize the value of a word or the 2 bytes within a single word, respectively.

DW 28
DB 37,48

DS assigns a label to the current address and increments the data address by the specified
number of words.

long: DW 2

The ORG pseudo-instruction is used to set the program address to the specified value. The
program address defaults to zero.

ORG 0

196

CPU16B Instruction Set Page 14 of 14

05/29/10

B11. Summary

Figure 12 shows how instructions are allocated within the space provided by the type,
operation and modifier fields. All instructions are 16 bits and all except IN, RD, IDIV and FDIV
execute in one clock cycle.

Figure 12 – Operation Code Matrix

JBS

