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Abstract 

I have developed a set of software de ned 
radio receiver modules to demonstrate the 
utility of standard Internet real-time and mul-
ticast protocols for interprocess communi-
cation. The multicast streams convey com-
plex digital IF sample streams, uncom-
pressed and compressed audio and decod-
ed physical layer frames (e.g., AX.25). One 
module can feed any number of others, and 
it is easy to move and restart individual 
modules without restarting the entire sys-
tem. The package is currently being used for 
general analog reception and to process 
balloon APRS tracking transmissions but 
has many other applications including satel-
lite operations and digital voice. The source 
code is in C, is available as open source  1

and runs on any UNIX-like operating sys-
tem, including Mac OSX and Linux on Intel/
AMD x86 and ARM (e.g., Raspberry Pi) sys-
tems.
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RTP background 

TCP, the standard Internet connection-ori-
ented stream transport protocol, is excellent 
at what it does but it is ill-suited to real time 
and multicast applications.  TCP's use of 
acknowledgements and retransmissions in-
troduces variable and possibly unbounded 
end-to-end delays intolerable in real-time 
communications, and it is usually impracti-
cal to have every receiver in a large multi-
cast group return its own acknowledge-
ments.

Hence the Real Time Protocol (RTP) was 
developed. Unlike TCP, RTP runs over the 
User Datagram Protocol (UDP) rather than 
directly above IP. But RTP is functionally a 
transport protocol so it provides some of the
same features as TCP (except acknowl-
edgements). Sequence numbering informs 
the receiver of missing or reordered packets.
Timestamps maintain time synchronization 
when packets are lost or deliberately not 
sent, e.g., with variable-rate compression 
schemes and discontinuous (PTT/VOX) 
transmission.  Other elds distinguish 
sources, identify upstream contributors and 
give the format and type of data being sent.

The core parts of RTP and ancillary proto-
cols are de ned in Internet RFC 3550 , pub2 -
lished in 2003.

IP multicasting 

RTP is ubiquitous in voice-over-IP telephony
(VoIP) but it was designed for much more. 
Although VoIP is usually sent over ordinary 
unicast point-to-point Internet paths, its ori-
gins are in IP multicasting: the e cient de-
livery of packets to a set of recipients that 

 https://github.com/ka9q/ka9q-radio1

 http://www.rfc-base.org/rfc-3550.html2
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may be large and time-varying. One obvious 
application is telephone conference calling; 
another is one-way broadcasting to limited 
audiences. AT&T's U-verse service  uses 3

multicast RTP to distribute TV programming 
over DSL and other relatively slow data links 
unable to carry a full composite channel set 
as in conventional cable TV. The same tech-
nology is also deployed in other countries.4

Ordinary unicast Internet packets are deliv-
ered to only one destination address, at 
most. If you have multiple recipients, you 
must send each its own unicast packet. This 
is often done, but there’s a more e cient 
way.

IPv4 addresses 224.0.0.0 to 
239.255.255.255 are multicast group ad-
dresses that appear only in the IP destina-
tion eld (never the source). Packets sent to 
a multicast address are duplicated by multi-
cast routers as necessary to e ciently de-
liver one copy to each member of the group. 
End points use the Internet Group Manage-
ment Protocol (IGMP) to join and leave indi-
vidual groups; in UNIX and Linux, these 
messages are automatically sent by the ker-
nel when an application joins a group, 
leaves or terminates.

Multicasting is even older than RTP; 
RFC1112 , published in 1989, de nes the 5

core concepts and procedures. IGMP has 
gone through three revisions, most recently 
in RFCs 3376  and 4604  published in 2002 6 7

and 2006. IPv6 has its own group manage-

ment protocol called Multicast Listener Dis-
covery.  Most subsequent work has been in 8

multicast routing, which doesn't a ect how 
host computers and applications use it.

IP multicasting is ubiquitous on LANs for lo-
cal resource discovery, especially by smart 
phones, tablets, printers and entertainment 
systems. But it is little used for media 
streaming outside “walled gardens" such as 
AT&T Uverse and some corporate and uni-
versity networks. It never caught on over the
public Internet, which seems a shame since 
so much Internet content (from public web-
sites to software updates) is inherently 
broadcast or multicast in nature. Apparently 
bers (and CDNs -- content distribution 

networks) are now so cheap that providers 
don't mind the inherent ine ciencies of 
sending the same data over and over.

RTP/multicast for SDR ap-
plications 

Of course you can still use these protocols 
in the privacy of your own home. (They can 
also be tunneled over the public Internet; 
more about this later.) It occurred to me that 
RTP over IP multicasting might be well suit-
ed to interconnecting software-de ned radio
components running on arbitrary computers 
around my house.  Except when speci c 
hardware is required, any module can run on
any computer with enough spare cycles. 
One sender can trivially feed several listen-
ers at the same time without any special 

 https://en.wikipedia.org/wiki/AT%26T_U-verse3

 https://en.wikipedia.org/wiki/IPTV4

 https://www.rfc-editor.org/info/rfc11125

 https://www.rfc-editor.org/info/rfc33766

 https://www.rfc-editor.org/info/rfc46047

 https://www.rfc-editor.org/info/rfc38108



38

arrangements. (A source doesn’t even have 
to know how many listeners it has.) A source 
simply transmits to a group and listeners 
join and leave it at will. My Ethernet switch-
es and routers do the necessary packet 
copying and forwarding.

Individual SDR modules can be started, 
stopped, and replaced as necessary without 
having to restart every other module in the 
signal path as would be necessary if they 
were connected with UNIX pipelines (on the 
same system) or TCP network connections.

Because networking is always more expen-
sive than a simple procedure call inside a 
program, it wouldn’t make sense to use 
multicast RTP between every conceivable 
signal processing block. I reserve it for well 
de ned points where the versatility of modu-
larity justi es the cost. So far I have created 
the following types of multicast streams:

1. Complex (I/Q) digital IF signals (with 
metadata)

2. Uncompressed PCM audio (mono or 
stereo)

3. Low bit rate lossy compressed audio 
(mono or stereo)

4. Raw demodulated physical layer data 
frames (e.g., AX.25).

Utilities also exist to record and play back 
each stream type for backup and testing 
purposes.

Here I describe the SDR modules I've writ-
ten to demonstrate the RTP/multicast con-
cept, along with their interface formats.

Digital IF streams 

These convey I/Q (complex) samples from 
various SDR front ends to programs that re-
ceive, demodulate or record them. I've 
found it convenient to host SDR hardware 
on a dedicated Raspberry Pi or small x86 
computer that multicasts the IF sample data 
onto Ethernet. The radio hardware can then 
be placed at the antenna, allowing an RF 
feed line to be replaced with Ethernet over 
twisted pair or optical ber.

The data usually consists of interleaved 16-
bit integer samples.  I used 8-bit integers 
with the HackRF One  (which has 8-bit A/9

Ds) but returned to 16 bits to handle the in-
creased dynamic range after optional deci-
mation. I'm considering the new IEEE stan-
dard half-precision (16 bit) oating point 
format  for more dynamic range without in10 -
creasing the data rate.

Each digital IF packet includes standard 
Ethernet, IP, UDP and RTP headers plus a 
custom metadata header with the time of 
day (nanosecond resolution), A/D sample 
rate, signal frequency (i.e., the radio fre-
quency corresponding to 0 Hz in the I/Q 
stream), and the analog gains ahead of the 
A/D.11

This being a custom format, I saw no need 
to follow the usual Internet conventions on 
byte ordering (beyond the standard IP/UDP/
RTP headers, which are always big-endian). 
For e ciency, A/D samples and metadata 
are little-endian, as are the x86, ARM and 

 https://greatscottgadgets.com/hackrf/9

 https://en.wikipedia.org/wiki/Half-precision_ oating-point_format10

 I brie y considered VITA-49, but it reminded me of OSI: too general, complex and vague. I'm willing 11

to reconsider, however.
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nearly every other surviving computer archi-
tecture.12

Tuning and gain setting commands are uni-
cast to the digital IF source, which then 
sends them to the hardware. The command 
format closely resembles the metadata 
header.  In principle, commands could be 
multicast to the same group as the data 
stream (with a distinguishing port or type 
value) so that everyone could see them, but 
this information is already echoed in the 
metadata.  No special con guration is nec-
essary, as the commands are sent to the 
source address of the IF stream with the 
UDP destination port being the UDP source 
port of the IF stream plus one. This also 
works for multiple streams from the same 
computer.

At the moment there is no command au-
thentication or contention resolution; more 
about this later.

Digital IF stream generators 
and consumers 

Three programs currently produce digital IF 
multicast streams: funcube, hackrf and iq-
play. 

The rst two read from the AMSAT UK Fun-
cube Dongle Pro+  and HackRF One, re13 -
spectively.  iqplay plays back locally gener-
ated or previously recorded streams for test 
purposes as though they originated from 
funcube or hackrf.

Two programs consume I/Q streams: 
iqrecord and radio. The rst is the record 
counterpart to the play program. As an ex-
periment, iqrecord stores metadata in ex-
tended le attributes;  the les themselves 14

contain only headerless I/Q sample data. 
This may or may not turn out to be a wise 
design.

The ability to record raw IF signals indepen-
dently of processing them is very useful dur-
ing critical spacecraft or balloon mission 
events. If something happens to the hard-
ware or software processing signals in real 
time, the signal is still preserved in a record-
ing that can be replayed later.

The radio program 

This is currently the largest and most com-
plex processing element, with an elaborate 
user interface. It implements a full-blown 
narrowband general coverage multimode 
receiver that processes the digital IF stream 
from the SDR front end and produces digita
audio. The user interface uses the ncurses 
package for e ciency over slow network 
connections.15

There is as yet no waterfall display; for 
modularity this should be a separate dedi-
cated program that reads the same digital IF
stream.

All processing is in the complex domain with
the input passband centered at 0 Hz, corre-
sponding to the radio frequency set by the 
tuner in the SDR front end.  Fine tuning (e.g.
between -96 kHz and +96 kHz for a 192 kHz
complex sample stream) is with a software 

 https://en.wikipedia.org/wiki/Endianness12

 http://www.funcubedongle.com/13

 https://en.wikipedia.org/wiki/Extended_ le_attributes14

 https://en.wikipedia.org/wiki/Ncurses15



40

oscillator implemented in double precision 
oating point for essentially perfect frequen-

cy resolution. When the edge of the I/Q 
passband is approached, a command is au-
tomatically sent to retune the SDR front end. 
(The edges of the passband are avoided as 
they are likely to contain aliased signal 
components.)

The user may opt to shift the rst (hardware) 
and second (software) LOs in tandem to 
maintain a constant radio frequency. This is 
useful for identifying possible images (from 
inadequate I/Q gain/phase correction) or 
aliases (from imperfect ltering) and shifting 
them away from the desired signal. In prin-
ciple this could be done automatically by 
nding the o sets that minimize the detector 

output, on the principle that images or alias-
es can only increase the detected output.

Optional Doppler steering for satellites is 
provided by reading a UNIX pipe from a 
separate program supplying timestamped 
relative velocity information from an open-
loop orbit model. The downconverter inter-
polates between velocity points to maintain 
continuous phase and frequency; this 
should assist coherent demodulators (e.g., 
for BPSK) that must track carrier phase.  To 
avoid front-end retuning transients, it should 
be set before a pass to keep the signal en-
tirely within the digital IF bandwidth.
       
This system kept the CW beacon from an 
old 70 cm Japanese cubesat in a 400 Hz 
lter from AOS to LOS with no manual inter-

vention and no audible retuning events. This 
required a current set of Keplerian orbital 
elements and accurate system time con-
trolled by the Network Time Protocol (NTP).

Pre-detection ltering is by fast convolution, 
which also reduces the sample rate to 48 
kHz. The user can independently adjust the 
lter skirts and Kaiser window  parameter 16

(which a ects the skirt shape). There's also 
a post-detection passband shift mainly use-
ful for narrow modes like CW or PSK31.  
The lter block size (default 20 ms) can be 
changed with a program restart. Because 
the lter is complex, asymmetric lters for 
SSB are easily implemented without an ex-
plicit Hilbert transform.

Signal and noise amplitudes are indepen-
dently measured so that pre-detection SNR 
can be calculated. Noise spectral density 
(N0) is estimated by rst averaging the pow-
er density outside the signal passband on 
the assumption that it contains mostly or 
only noise. Then a new average is comput-
ed, excluding frequency bins with energies 
above some threshold relative to the rst 
average on the assumption that they contain
other signals, not just noise. Although not 
foolproof, this algorithm works remarkably 
well with just a few passes.

Signal demodulators 

Three demodulators for analog modes are 
currently provided. The linear demodulator 
handles SSB, CW, coherent AM, DSB, ISB 
(independent sideband) and similar modes. 
A software PLL recovers the carrier in the 
coherent AM and DSB modes (in DSB, the 
carrier is rst regenerated by squaring). This 
is especially useful for frequency calibration 
to a known source.

The AM demodulator is a simple envelope 
detector.

 https://en.wikipedia.org/wiki/Kaiser_window16
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The FM demodulator uses direct arctangent 
calculation.    You can listen to either the 17

raw FM output or to a de-emphasized and 
PL- ltered version . A FFT determines the 18

frequency of any PL tone to 0.1 Hz preci-
sion.

The FM demodulator uses an experimental 
threshold extension algorithm of my own 
design. Many FM demodulators rst limit the 
signal to a constant amplitude, but this dis-
cards potentially useful information. I use 
sample amplitudes as reliability hints akin to 
"soft decision" Viterbi FEC decoding. A 
weak sample is more likely to be part of a 
“click" than a strong one, so I simply blank 
them. I found empirically that blanking sam-
ples with amplitudes below about 0.55 times 
average produces good results: much less 
"popcorn" noise than pure FM detection, 
without much loss of high audio frequen-
cies.  I haven’t compared it with the usual 
methods of threshold extension such as a 
tracking PLL.

The FM squelch operates from rst princi-
ples; I measure the amplitude and the vari-
ance of the pre-detection FM signal and 
calculate its SNR. If it is above a xed 
threshold (+3 dB), the squelch opens. This 
works so well I've felt no need for a manual 
“squelch knob". Originally the squelch 
closed in complete silence, but I had to de-
lay it by one 20ms lter frame to ensure lter 
ushing when demodulating AX.25 packets; 

unfortunately this reintroduced a brief 
squelch tail.

PCM audio 

The radio program produces a 16-bit 48 kHz 
PCM mono or stereo audio multicast 
stream, depending on demodulator mode.  I 
use an existing Internet convention for un-
compressed PCM in RTP with big-endian 
samples and di erent payload types for 
mono and stereo. This is fully compatible 
with Internet audio players such as vlc .19

PCM audio streams can also be heard with 
the monitor program, recorded with the 
iqrecord program (which automatically de-
tects IF and audio streams) or further pro-
cessed by other programs, e.g., the opus 
lossy audio compressor or the packet AFSK/
AX.25 demodulator. It should be easy to 
adapt other signal processing programs, 
e.g., WSJT-X, to accept PCM audio multi-
cast streams. This would avoid any need to 
use a computer’s sound subsystem.

Opus compressed audio 

Mono 16-bit PCM at 48 kHz consumes 768 
kb/s; ne on a wired Ethernet but uncom-
fortably high even on WiFi. This high rate is 
overkill for communications-quality audio, 
but rather than reduce the sample rate I 
added the Opus general-purpose lossy au-
dio codec.  It is intended only for listening; 
digital demodulators should always process 
the PCM stream.

Opus is an IETF standard described in RFC 
6716 and elsewhere .  An excellent refer20 -

The DSP literature is full of articles on fast arctangent approximations for FM demodulation but even 
on the Raspberry Pi, the regular arctangent library function is plenty fast. Hardware has come a long 
way!

 I suppose I should say CTCSS, but it's a mouthful.18

 http://www.videolan.org19

 https://www.rfc-editor.org/info/rfc671620
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ence implementation is available in open 
source,  and unlike many other codecs no 21

license fees are required. It combines sever-
al algorithms to span a very wide range of 
compressed bit rates, from 6 kb/s to 510 kb/
s. To my ear 32 kb/s is plenty for communi-
cations quality speech and lower data rates 
(down to 6 kb/s) are quite acceptable.

Opus strongly prefers a constant 48 kHz 
sample rate even for communications quali-
ty speech, and there is no bit rate advantage 
to lowering the sample rate or to operating 
the codec in mono, as opposed to stereo 
with the same signal in each channel. I think 
it's an excellent, easy-to-use codec; the 
price is certainly right. Along with CODEC2  22

for very low bit rates I'd really like to see 
Opus widely used in ham radio. We've been 
hamstrung by proprietary codecs far too 
long!

The program opus listens to PCM on one 
multicast group and repeats it in Opus-
compressed form on another. Options select 
the input and output multicast groups, the 
target compressed bit rate (default 32 kb/s) 
and the codec block duration (default 20 
ms). It also enables discontinuous transmis-
sion, a VOX-like mechanism that reduces 
the output rate to about 3 (short) packets 
per second when there is (near) silence on 
the PCM input. For FM reception the 'radio' 
program stops the PCM stream when the 
squelch closes, so the Opus stream also 
stops even if discontinuous mode is not se-
lected.

Because the PCM and Opus streams are on 
separate multicast groups, an audio player 
can simply select the appropriate group ac-
cording to the available network capacity. 

Opus is especially useful for remote moni-
toring.

The monitor program 

The monitor program mentioned above can 
play both Opus and PCM streams.  It can 
handle any number of streams on any num-
ber of multicast groups, and the user inter-
face lets the user adjust the gain and stereo 
position of each stream to support a “virtual 
conference table" feature where each partic-
ipant has his own place in the stereo image.  
Stereo positioning is performed by varying 
the relative amplitudes and delays of the 
two channels.

The monitor program is conceptually simple, 
but it probably gave me more headaches 
than anything else I wrote. I had to over-
come WiFi timing jitter and several bugs in 
audio sound libraries and device drivers. I 
became quite familiar with how WiFi access 
points handle multicast tra c; more on this 
later.

Handling jitter can be di cult, especially 
when you want to minimize latency. There 
seem to be two common approaches to 
managing a playout bu er: maintaining a 
xed delay and simply dropping any pack-

ets that arrive too late; or increasing the de-
lay as needed when packets arrive late. I 
tried both and chose the latter, but this cre-
ates the problem of keeping the delay from 
becoming excessive.

The FM squelch helps a lot. Whenever it 
closes, the PCM stream stops and lets the 
playout bu er drain. Discontinuous trans-
mission in Opus additionally stops the 
stream during speech pauses, again letting 
the playout bu er drain.

 http://opus-codec.org/21

 http://www.rowetel.com/?page_id=45222
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This is quite acceptable on voice, but sud-
den arbitrary timing jumps are unwelcome 
when copying CW. This hasn't been much 
of a problem on HF because the linear de-
modulator lacks a squelch and high back-
ground noise levels keeps Opus transmit-
ting.  The user may manually ush the play-
out bu er by hitting the 'r' key; having con-
trol of when a delay reset happens makes all 
the di erence.

Timing jumps are very serious impairments 
in synchronous digital modulation, so again 
demodulators should always read the PCM 
multicast stream without lossy compression, 
activity detection or playout bu ering.  The 
monitor program is strictly for human listen-
ing.

AX.25 frames and the 
packet program 

My rst application for this package is to re-
ceive, decode and relay APRS xes from the 
high altitude balloons we build and launch 
from Mount Carmel High School and the 
University of California, San Diego. This 
uses several more modules starting with the 
program packet, essentially a software re-
ceive-only implementation of the ancient 
KISS TNC.23

It reads a PCM stream from the radio pro-
gram, demodulates 1200 bps AFSK and de-
codes HDLC frames. Valid frames are multi-
cast for subsequent processing by other 
programs, including aprs and aprsfeed.

Aprs extracts APRS position reports from 
AX.25 frames and computes azimuth, eleva-
tion and range from the observing station. 
Eventually this will automatically steer direc-
tional microwave antennas.

The other program, aprsfeed, acts as a re-
ceive-only APRS i-gate  to the worldwide 24

APRS network . Unlike the aprs program, 25

which must understand the mind-bogglingly 
gratuitous number of ways to encode posi-
tions in APRS reports , aprsfeed simply re26 -
lays raw frames to an APRS network server 
without interpretation, performing only 
(some of) those operations required by the 
APRS servers such adding the reporting 
callsign to the address chain and dropping 
certain types of packets.

As with the PCM streams, these two pro-
grams also illustrate the utility of feeding the 
output of one module (the AX.25 frames 
from packet) simultaneously to several read-
ers.

SDR hardware experience 

Well-de ned interfaces between compo-
nents of a large project are at once vitally 
important and very di cult to get right. This 
project is as much about experimenting with 
those interfaces as creating components to 
do actual signal processing. Often the only 
way to nd out if an interface will work is to 
try it, hopefully on a small enough scale that 
it can be changed without worrying too 
much about backward compatibility. My in-
terfaces have already gone through several 
revisions and I won't pretend they're perfect.
That's the whole idea: to build a proof of 

 http://www.ka9q.net/papers/kiss.html23

 http://www.aprs-is.net/IGating.aspx24

 E.g., the popular http://aprs.  website25

 Don’t get me started about APRS protocols. Just don’t.26
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concept to experiment with so you can g-
ure out what actually works.

I generate digital IF streams with standalone 
programs that talk directly to the front end 
hardware, usually by USB. So far I support 
the AMSAT UK Funcube Dongle Pro+ and 
the HackRF One with programs funcube 
and hackrf. Although I could probably sup-
port more hardware through SoapySDR , I 27

often nd such "shimware" packages less 
than satisfactory because their APIs often 
seem at once excessively general and com-
plex yet incomplete by omitting ways to ac-
cess certain hardware-speci c features. (I 
do use the well-established portaudio li-
brary  to talk to digital audio devices, and 28

I'm not sure even that was a great idea.)  
Besides, my program is arguably itself 
shimware, so why do it twice?

Initially I sent I/Q samples direct from the A/
D converters, leaving it up to the consumer 
to set analog gains, remove DC o sets, and 
correct I/Q gain, phase imbalance and fre-
quency errors. I've since moved those func-
tions into funcube and hackrf to remove un-
necessary hardware dependence from the 
programs that consume their digital IF 
streams.  Because the HackRF One sup-
ports sample rates up to 20 MHz, I added 
optional decimation to hackrf to keep the 
Ethernet data rate reasonably low. I typically 
decimate a 12.288 MHz A/D sample rate 
64:1 to 192 kHz, the same as the Funcube 
dongle. Other sample rates and decimation 
ratios can be selected if the Ethernet link 
(and the USB interface to the hardware) can 
handle them.  Gigabit Ethernet should han-
dle ~30 Ms/s sample rates assuming 16-bit 
complex samples, though this would proba-
bly require jumbo  Ethernet frames and 29

careful attention to kernel bu ering and CPU
scheduling.

The decimator in hackrf can optionally shift 
the spectrum by one quarter of the A/D 
sample rate to move near-DC A/D artifacts 
well outside the output passband so the ra-
dio program need not avoid the DC region. 
In e ect, this adds another stage of fre-
quency downconversion and ltering.

A Raspberry Pi 3 handles the Funcube Pro 
dongle with ease because the sample rate is 
xed at 192 kHz; even with DC o set, gain 

and phase correction it uses only 8.5% of 
one ARM CPU core.

The Pi's Achilles heel is relatively slow I/O; it 
cannot keep up with a HackRF sampling at 
12.288 MHz so I'm currently using an old 
1.66 GHz Intel Atom D510.  Decimation l-
tering is with a cascade of 15-tap half-band 
lters implemented in Intel SSE and single 

precision oating point. 64:1 decimation 
takes 83% of one Atom core, and every-
thing else (including o set/gain/phase cor-
rection) takes 50% of a second core.

Having started with the 16-bit Funcube 
dongle, I put o  writing an AGC for some 
time. The HackRF One has only 8-bit A/Ds 
so I was nally forced to implement one. 
This AGC, being hardware speci c, belongs 
in the hackrf program. Without it, iqrecord 
might record unusable data unless some-
thing else generates any necessary gain set-
ting commands (iqrecord does not).  A sim-
ple hysteresis scheme seems to work well. 
The analog gain settings are included in the 
metadata so radio can easily recover the 
(uncalibrated) absolute input signal level.

 https://github.com/pothosware/SoapySDR/wiki27

 http://www.portaudio.com/28

 https://en.wikipedia.org/wiki/Jumbo_frame29
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I would like to give radio signals calibrated 
to absolute levels at the antenna terminal 
but I found that SDR front end conversion 
gains are highly frequency dependent.  This 
is especially so with the Funcube dongle 
because of its set of 11 preselection lters -- 
one of its major advantages in crowded ar-
eas. I would have to measure and construct 
a gain/frequency calibration table for each 
device.

Hardware contention reso-
lution 

Because digital IF streams are multicast, its 
easy to have multiple copies of radio listen-
ing to each stream, tuned to di erent fre-
quencies and/or modes within the IF band-
width.  There’s no explicit contention resolu-
tion, so radio sends a retune command to 
the SDR front end only when the user man-
ually retunes it, and then only when neces-
sary to bring the signal within the IF pass-
band (i.e., between +/- one-half the sample 
rate). Because the rst LO frequency is car-
ried in the IF metadata, the radio programs 
will notice whenever the front end is retuned 
and will automatically adjust their own sec-
ond (software) LOs to compensate, if possi-
ble. If the desired signal has moved outside 
the Nyquist bandwidth radio will patiently 
wait (unless the user manually retunes it). 
This avoids a possible “retuning war” be-
tween the radio instances.

An obvious way to lessen the contention 
problem is to use higher SDR sampling rates 
that can span, eg., an entire amateur band. 
Another might be to use a polyphase lter 
bank to create a pool of "virtual" front ends, 
each conveying some part of the input 
spectrum at a lower sample rate. The rst 
approach is both simpler and conceptually 
more in keeping with the idea of multiple 
consumers sharing a common signal source 

but practical limits (like Ethernet link speeds) 
may come into play.

Problems with multicasting 

No paper like this is complete without a 
candid discussion of problems and obsta-
cles encountered, whether or not they were 
overcome. 

IP multicasting admittedly has its share. Al-
though the basic multicast protocols have 
been around for a long time, as explained 
earlier they have not been widely used be-
yond the simple, degenerate case of re-
source discovery on local area networks. 
These applications run at low data rates 
(rarely more than one packet per second) so 
they don’t stress a network very much, and 
because they’re con ned to LAN segments 
they don’t require any special routing mech-
anisms. So it wasn’t a surprise to run into 
some problems when multicasting 6 
megabit/s digital IF streams or in establish-
ing multicast connectivity between LAN 
segments. There’s always a price for living 
on the bleeding edge!

IP multicast routers are available as open 
source, but my experience with them has 
been frustrating. They are complex to set 
up, use Linux kernel features that are not 
extensively tested, and often require that 
you rst set up a network tunnel (VPN) to 
provide logical adjacency between the two 
LANs you wish to join. This isn’t too hard for 
(semi) permanent situations if you know 
what you’re doing, but it has so far proven 
very frustrating to do on the y, e.g., from a 
laptop through a public WiFi hotspot. I will 
probably resort to ordinary unicast tra c 
when I want to listen remotely to the audio 
from one of my SDRs.

Fortunately, explicit multicast routing is 
rarely necessary for most of my intended 
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applications. The various elements all run on 
computers within my house, and most of 
those are in one room (my ham shack) 
where they are all connected to the same 
Ethernet switch. Multicasting is ideal in this 
case.

The common “dumb” (unmanaged) Ethernet 
switch handles multicasts in a very simple 
way: a copy is ooded to every switch port 
except the one on which it arrived.  They 30

are handled just like a broadcast, which is 
just a special case of multicast. When the 
multicast rate is low, as it usually is in re-
source discovery, this creates no problems. 
Nor will higher speed multicasting cause any 
problems as long as the aggregate multicast 
data rate is below the spare capacity of the 
slowest port on the switch; every modern 
host Ethernet interface simply ignores multi-
cast tra c in which it is not interested. But 
problems will obviously occur if, say, the 
multicast load is 20 Mb/s and one switch 
port is running at the old, slow 10 Mb/s rate.

Aside from doing without multicast entirely, 
this problem can be solved in several ways,  
not always satisfactory.

The simplest x is to dedicate an isolated 
switch to high speed multicast tra c, avoid-
ing any devices that cannot operate at full 
switch speed (usually 1 Gb/s). This may be a 
perfectly workable approach when the SDR 
modules are all running on closely located 

computers (e.g., in a ham shack) but it 
would be nice if it weren’t necessary.
Unfortunately, one especially slow Ethernet 
device is nearly ubiquitous on home net-
works: the WiFi base station.

802.11 WiFi uses an ever-widening range of 
transmission speeds to maximize the ca-
pacity of each radio link while minimizing 
interference to co-channel users. Link level 
acknowledgments are critical to nding the 
highest transmission speed that can be 
used to a given destination and in recover-
ing packets lost to interference or sudden 
decreases in radio link quality.

This works ne for unicast packets, but 
most inexpensive WiFi base stations trans-
mit Ethernet multicasts as physical layer 
broadcasts at a xed low data rate without 
radio link acknowledgments. The multicast 
rate can sometimes be manually con gured,
but often it is xed at just a few Mb/s. A sin-
gle digital IF multicast stream at 6 Mb/s will 
obviously cause such a base station to roll 
over and die even if it has no wireless clients 
who even want the stream! 

There are two highly e ective xes to this 
problem, but unfortunately they are rarely 
implemented in consumer-grade switches 
and access points.

The rst x is multicast to unicast conver-
sion. Modern WiFi access points have such 
a wide range of transmission speeds that it 

This is inherent in Ethernet switching. Any packet to a destination address not in the switch’s for30 -
warding database (from being seen in the source eld of some earlier packet) is automatically ooded 
out every port except the one on which it arrived. Multicast addresses never appear as source ad-
dresses, so they are always ooded.
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is invariably more e cient to just send each 
recipient its own copy of each multicast 
packet using the usual unicast mechanisms 
at whatever speed the target can support.  31

Unfortunately, low end access points rarely 
implement this mechanism although support 
is increasing as the problem of multicast 
over WiFi become more widely known.  32 33

The second x is IGMP snooping. A switch 
eavesdrops on the IGMP messages gener-
ated by host computers joining or leaving 
each multicast group so it can squelch mul-
ticast tra c to switch ports where nobody is 
listening. Placing a WiFi access point on an 
IGMP-snooping switch (and not having any 
of its clients subscribe to a high rate multi-
cast group) is an e ective x. Some WiFi 
access points also do IGMP snooping.

IGMP snooping does have its drawbacks.  34

Although it seems to be universally imple-
mented on “managed” or “smart” switches, 
less expensive models like my Netgear 
GS110TP don’t support IGMPv3, the latest 
version, forcing the network to fall back to 
an older, less capable version. IPv6 has its 
own form of IGMP called Multicast Listener 
Discovery (MLD) that my GS110TP doesn’t 
understand at all, so it can only lter IPv4 
multicasts; IPv6 multicasts still ood to 
every port. This switch limitation seems so 
common that I don’t yet support IPv6 multi-

casting even though I would very much like 
to. (It also pays to read the ne print when 
buying a supposedly smart Ethernet switch 
or WiFi access point.)

A more basic problem is that IGMP snoop-
ing is a classic protocol layering violation: a 
layer 2 device (Ethernet switch) is looking at 
higher layer protocol (IPv4 or IPv6) informa-
tion that it should treat as opaque data. But 
the performance bene ts are so great as to 
warrant an exception.

 There’s a real irony here in that we’ve long seen radio as an inherently broadcast medium where, 31

intuitively, it ought to be easy and e cient to have everyone receive a single transmission. Thanks to 
adaptive power control, modulation, coding and now MIMO beam forming, this “inherent” property of 
radio seems to be disappearing for good. The e ciency bene ts of multicasting may be restricted to 
point-to-point (i.e., non-broadcast) wire and ber channels! However, I do see a silver lining: surrepti-
tious eavesdropping on a radio link won’t be as easy as it used to be.

 Many AT&T U-verse subscribers, including this author, rst discovered WiFi’s vulnerability to high 32

speed multicasts when they plugged their own consumer-grade access points into switch segments 
with Uverse set top boxes. A Uverse HDTV stream is about 6 Mb/s, the same as one of my digital IF 
streams, enough to saturate the access point until it is disconnected.

 https://tools.ietf.org/id/draft-ietf-mboned-ieee802-mcast-problems-01.html33

 https://www.rfc-editor.org/info/rfc454134


